pandas.DataFrame/pandas.core.frame.DataFrame - The Table Class

This section describes pandas.DataFrame/pandas.core.frame.DataFrame class, which represents a table of data with rows and columns.

What Is pandas.DataFrame/pandas.core.frame.DataFrame? pandas.DataFrame/pandas.core.frame.DataFrame is a class that represents a tabular structure with potentially heterogeneously-typed columns.

Main features of pandas.DataFrame are:

Here are some basic properties, operations and methods provided in pandas.DataFrame class.

1. pd.DataFrame() - Method to construct a new DataFrame object. The example below uses a JSON string to provide input.

>>> import pandas as pd

>>>
df = pd.DataFrame({
  "Name": [
    "Braund, Mr. Owen Harris",
    "Allen, Mr. William Henry",
    "Bonnell, Miss. Elizabeth",
  ],
  "Age": [22, 35, 58],
  "Sex": ["male", "male", "female"],
})

>>> type(df)
<class 'pandas.core.frame.DataFrame'>

>>> print(df)
                       Name  Age     Sex
0   Braund, Mr. Owen Harris   22    male
1  Allen, Mr. William Henry   35    male
2  Bonnell, Miss. Elizabeth   58  female

2. df[col_name] or df.col_name - Operation to return a Series object representing data elements of the given column.

>>> age = df["Age"]
>>> age = df.Age

>>> type(age)

<class 'pandas.core.series.Series'>

>>> print(age)
0    22
1    35
2    58
Name: Age, dtype: int64

3. df[col_name][index], df.col_name[index] or df.at[index, col_name] - Operation to return the data element of the given index and the given column.

>>> a2 = df["Age"][2]
>>> a2 = df.Age[2]
>>> a2 = df.at[2, "Age"]

>>> type(a2)
<class 'numpy.int64'>

>>> print(a2)
58

4. df.iat[i, j] - Operation to return the data element of the given row position and the given column position of the DataFrame.

>>> a2 = df.iat[2, 1]

>>> type(a2)
<class 'numpy.int64'>

>>> print(a2)
58

5. df.columns - Property holding an Index object representing the column list.

>>> cols = df.columns

>>> type(cols)
<class 'pandas.core.indexes.base.Index'>

>>> print(cols)
Index(['Name', 'Age', 'Sex'], dtype='object')

6. df.shape - Property holding shape (number of rows and number of columns) of of the DataFrame.

>>> print(df.shape)
(3, 3)

7. df.append() - Method to append a Dict object as a row to the DataFrame.

>>> df.append({"Name": "John Smith", "Age": 18, "Sex": "male"})

8. df.groupby(column_list) - Method to return pandas.core.groupby.generic.DataFrameGroupBy object, which supports count() and other methods.

>>> grp = df.groupby(['Sex']).count()
        Name  Age
Sex
female  1     1
male    2     2

Table of Contents

 About This Book

 Running Python Code Online

 Python on macOS Computers

 Python on Linux Computers

 Built-in Data Types

 Variables, Operations and Expressions

 Statements - Execution Units

 Function Statement and Function Call

 Iterators and Generators

 List, Set and Dictionary Comprehensions

 Classes and Instances

 Modules and Module Files

 Packages and Package Directories

 "sys" and "os" Modules

 "pathlib" - Object-Oriented Filesystem Paths

 "pip" - Package Installer for Python

 SciPy.org - Python Libraries for Science

pandas - Data Analysis and Manipulation

 What Is 'pandas'

pandas.DataFrame/pandas.core.frame.DataFrame - The Table Class

 pandas.core.series.Series - The Column Class

 File Input and Output for DataFrame

 Anaconda - Python Environment Manager

 Jupyter Notebook and JupyterLab

 References

 Full Version in PDF/EPUB