2-Dimensional Cartesian Coordinate System

This section provides an introduction of 2-dimensional Cartesian coordinate systems, which uses perpendicular projections on 2 perpendicular axes to describe any locations in the frame of reference.

When describing an object that is moving along non-straight line, we need to use 2-dimensional or 3-dimensional frame of references and coordinate systems.

For example, the trajectory of a flying golf ball is not a straight line, but it can described with a 2-dimensional frame of reference and an associated coordinate system.

First, let's define a 2-dimensional frame of reference as a vertical rectangle:

Next, let's create a simple coordinate system:

Now we are can describe any location of the golf ball while it's flying in the air as a pair of coordinate numbers by reading scales of its perpendicular projections on the x-axis and the y-axis.

For example, the highest location of the golf ball in the picture below can be described as (14.89, 7.93) because:

2-Dimensional Cartesian Coordinate System (chegg.com)
2-Dimensional Cartesian Coordinate System

Last update: 2014.

Table of Contents

 About This Book

 Introduction of Space

Introducion of Frame of Reference

 What Is Frame of Reference

 Frame of Reference with 2 Objects

 What Is Coordinate System

2-Dimensional Cartesian Coordinate System

 3-Dimensional Cartesian Coordinate System

 1 Frame of Reference with 2 Coordinate Systems

 Introducion of Time

 Introduction of Speed

 Newton's Laws of Motion

 Introduction of Special Relativity

 Time Dilation in Special Relativity

 Length Contraction in Special Relativity

 The Relativity of Simultaneity

 Introduction of Spacetime

 Minkowski Spacetime and Diagrams

 References

 PDF Printing Version